Shared origins of a key enzyme during the evolution of C4 and CAM metabolism

نویسندگان

  • Pascal-Antoine Christin
  • Monica Arakaki
  • Colin P. Osborne
  • Andrea Bräutigam
  • Rowan F. Sage
  • Julian M. Hibberd
  • Steven Kelly
  • Sarah Covshoff
  • Gane Ka-Shu Wong
  • Lillian Hancock
  • Erika J. Edwards
چکیده

CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution along the crassulacean acid metabolism continuum

Crassulacean acid metabolism (CAM) is a specialised mode of photosynthesis that improves atmospheric CO2 assimilation in water-limited terrestrial and epiphytic habitats and in CO2-limited aquatic environments. In contrast with C3 and C4 plants, CAM plants take up CO2 from the atmosphere partially or predominantly at night. CAM is taxonomically widespreadamongvascular plants and is present inma...

متن کامل

Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.

The evolutionary accessibility of novel adaptations varies among lineages, depending in part on the genetic elements present in each group. However, the factors determining the evolutionary potential of closely related genes remain largely unknown. In plants, CO2-concentrating mechanisms such as C4 and crassulacean acid metabolism (CAM) photosynthesis have evolved numerous times in distantly re...

متن کامل

Independent and Parallel Evolution of New Genes by Gene Duplication in Two Origins of C4 Photosynthesis Provides New Insight into the Mechanism of Phloem Loading in C4 Species

UNLABELLED C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the...

متن کامل

Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna.

Low levels of crassulacean acid metabolism (CAM) are demonstrated in two species with C4 photosynthesis, Portulaca cyclophylla and P. digyna. The expression of CAM in P. cyclophylla and P. digyna is facultative, i.e. optional. Well-watered plants did not accumulate acid at night and exhibited gas-exchange patterns consistent with C4 photosynthesis. CAM-type nocturnal acidification was reversibl...

متن کامل

On the Evolutionary Origin of CAM Photosynthesis[OPEN]

Evolution of carbon concentrating mechanisms appears complex. In the case of C4 photosynthesis, an enabling mutation is thought to have formed an initial C4 cycle, which is then selected for flux, and, finally, high expression of photorespiratory genes is lost (for summary, see Bräutigam and Gowik, 2016). However, in the case of Crassulacean acid metabolism (CAM) photosynthesis, we suggest that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014